Département de Mathématiques
Permanent URI for this collection
Browse
Browsing Département de Mathématiques by Subject "Algèbre"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Quelques propriétés algébriques et analytiques de la fonction digamma(ummto, 2020) Ighmouracene, ThinhinaneCe travail est consacré pour la fonction digamma ; la dérivée logarithmique de la fonction Gamma. Dans un premier temps on a donné quelques propriétés générales de cette fonction. Par la suite on a fait une étude analytique, où on a donné le domaine de définition suivi de la continuité et de la dérivabilité. Psi est justement de classe C^?sur ?C?Z?_- , et ses dérivées successives sont appelées fonctions poly-gamma.On a aussi étudié algébriquement cette fonction ; en prenant les nombres ?(r/p)(1?r?p) comme des vecteurs d'un espace sur un corps algébrique de nombres extension de Q.M.RamMurty et N.Saradhaont montré que ?(r/p)+? sont linéairement indépendants et ils ont annoncé la conjecture suivante : les ?(p) vecteurs ?(r/p),1?r?p-1,(r,p)=1 sont linéairement indépendants sur K.On termine le travail par un bref exposé sur le lien de la fonction digamma à l'hypothèse de Riemann. Psi intervient directement sur les sommes de Vasyunin dans la formule deVasyunin pour calculer une certaine famille de produits scalaires intervenant dans la critère de Baez-Duarte-Balazard concernant l'hypothèse de Riemann.